5 research outputs found

    Etude dynamique et structurale de biomolécules par microscopie à force atomique HS-AFM (application à une petite protéine de choc thermique sHsp)

    Get PDF
    La microscopie Ă  force atomique (AFM) permet de visualiser la topographie d Ă©chantillons organiqueset inorganiques Ă  l Ă©chelle atomique. Les innovations les plus rĂ©centes offrent dĂ©sormais la possibilitĂ©d accĂ©der aux propriĂ©tĂ©s nano-mĂ©caniques des Ă©chantillons (Ă©lasticitĂ©, adhĂ©sion ). Son panel defonctionnalitĂ©s permet de pallier aux besoins des nanotechnologies, tant dans les domaines de laphysique, de la chimie que de la biologie.Cependant, les besoins nĂ©cessaires Ă  la comprĂ©hension des processus biologiques imposent aumicroscope Ă  force atomique des vitesses d acquisitions rapides, infĂ©rieures Ă  la seconde par image. LesĂ©quipements classiques n offrent pas cette possibilitĂ©. C est pour s affranchir de ce verrou technologique,pour l Ă©tude dynamique, qu un prototype de microscope Ă  force atomique Ă  haute-vitesse a Ă©tĂ©dĂ©veloppĂ© (HS-AFM) en partenariat avec l Ă©quipe du Professeur T. Ando Ă  l UniversitĂ© de Kanazawa(Japon). Il permet d atteindre des vitesses de balayage identiques aux vitesses vidĂ©os : 25-50 images/s, enmilieu liquide. Le dispositif est en perpĂ©tuelle amĂ©lioration : nouvelle boucle d asservissement, domainesde balayage augmentĂ©s. La haute rĂ©solution est, quant Ă  elle, assurĂ©e par des leviers miniaturisĂ©s munisde sur-pointes en carbone. ParallĂšlement Ă  l innovation du microscope en lui-mĂȘme, des modulescomplĂ©mentaires ont Ă©tĂ© dĂ©veloppĂ©s : module pousse seringue et module chauffant.Le potentiel de ce prototype, dĂ©veloppĂ© dans le cadre d un programme ANR PNANO 2008 HSnanobio-Imaging, a Ă©tĂ© montrĂ© via l Ă©tude d une petite protĂ©ine de choc thermique : la protĂ©ine sHspLo18. Cette protĂ©ine, issue de la bactĂ©rie lactique Oenococcus oeni, offrait la possibilitĂ© d Ă©tudier deschangements de degrĂ©s d oligomĂ©risation en fonction du pH, ainsi que le rĂŽle chaperon et lipochaperonen cas de stress environnemental d autres complexes biologiques. L utilisation des techniques demicroscopie couplĂ©e Ă  des Ă©tudes biochimiques sur ce modĂšle protĂ©ique a permis d apprĂ©hender l effetdes surfaces sur l adsorption et la dynamique des complexes biologiques. L interaction protĂ©ine surfacea pu ĂȘtre approchĂ©e et s avĂšre utile au dĂ©veloppement des capteurs Ă  protĂ©inesThe atomic force microscopy (AFM) gives access to the topography of organic and inorganic samplesat the atomic scale. The latest innovations offer the possiblity to understand the sample nano-mechanicalproperties (elasticity, adhesion...). Its feature set allows overcoming the demands of nanotechnology,both in the fields of physics, chemistry and biology.However, understanding biological processes require faster acquisitions for the atomic forcemicroscopy, less than a second per frame. As conventional equipment does not offer the possibility toovercome the constraint of time for dynamical studies, a prototype of high-speed atomic forcemicroscope (HS-AFM) was developed in partnership with Professor T. Ando group of Kanazawa University(Japan). It can reach scanning video speed: 25-50 frames/s in a liquid medium. The device is beingconstantly improved: new feedback control, larger scanning sizes. The resolution is provided byminiaturized cantilevers with carbon EBD-tips. In parallel to innovative modules on the microscope, addonshave been developed: syringe pump and heating modules.The potential of the prototype, developed within the framework of the program ANR PNANO 2008HS-nanobio-Imaging, has been shown through the study of a small heat shock protein: the protein sHspLo18. This protein, from the lactic acid bacterium Oenococcus oeni, offered the possibility of a variouschanges of oligomerization degrees according to the pH, and also the chaperone and lipochaperon activityof protein under the influence of an environmental stress. The use of these techniques of microscopiescoupled with biochemical studies on this proteic model allowed to dread the effect of surfaces on theadsorption and the dynamics of biological complexes. The interaction protein surface coulb be toapprehend and proves to be useful for the development of protein sensors developed in the laboratoryDIJON-BU Doc.Ă©lectronique (212319901) / SudocSudocFranceF

    Dynamic and structural study of biomolecules by atomic force microscopy HS-AFM : application to a small heat shock protein sHsp

    No full text
    La microscopie Ă  force atomique (AFM) permet de visualiser la topographie d’échantillons organiqueset inorganiques Ă  l’échelle atomique. Les innovations les plus rĂ©centes offrent dĂ©sormais la possibilitĂ©d’accĂ©der aux propriĂ©tĂ©s nano-mĂ©caniques des Ă©chantillons (Ă©lasticitĂ©, adhĂ©sion
). Son panel defonctionnalitĂ©s permet de pallier aux besoins des nanotechnologies, tant dans les domaines de laphysique, de la chimie que de la biologie.Cependant, les besoins nĂ©cessaires Ă  la comprĂ©hension des processus biologiques imposent aumicroscope Ă  force atomique des vitesses d’acquisitions rapides, infĂ©rieures Ă  la seconde par image. LesĂ©quipements classiques n’offrent pas cette possibilitĂ©. C’est pour s’affranchir de ce verrou technologique,pour l’étude dynamique, qu’un prototype de microscope Ă  force atomique Ă  haute-vitesse a Ă©tĂ©dĂ©veloppĂ© (HS-AFM) en partenariat avec l’équipe du Professeur T. Ando Ă  l’UniversitĂ© de Kanazawa(Japon). Il permet d’atteindre des vitesses de balayage identiques aux vitesses vidĂ©os : 25-50 images/s, enmilieu liquide. Le dispositif est en perpĂ©tuelle amĂ©lioration : nouvelle boucle d’asservissement, domainesde balayage augmentĂ©s. La haute rĂ©solution est, quant Ă  elle, assurĂ©e par des leviers miniaturisĂ©s munisde sur-pointes en carbone. ParallĂšlement Ă  l’innovation du microscope en lui-mĂȘme, des modulescomplĂ©mentaires ont Ă©tĂ© dĂ©veloppĂ©s : module pousse seringue et module chauffant.Le potentiel de ce prototype, dĂ©veloppĂ© dans le cadre d’un programme ANR PNANO 2008 HSnanobio-Imaging, a Ă©tĂ© montrĂ© via l’étude d’une petite protĂ©ine de choc thermique : la protĂ©ine sHspLo18. Cette protĂ©ine, issue de la bactĂ©rie lactique Oenococcus oeni, offrait la possibilitĂ© d’étudier deschangements de degrĂ©s d’oligomĂ©risation en fonction du pH, ainsi que le rĂŽle chaperon et lipochaperonen cas de stress environnemental d’autres complexes biologiques. L’utilisation des techniques demicroscopie couplĂ©e Ă  des Ă©tudes biochimiques sur ce modĂšle protĂ©ique a permis d’apprĂ©hender l’effetdes surfaces sur l’adsorption et la dynamique des complexes biologiques. L’interaction protĂ©ine – surfacea pu ĂȘtre approchĂ©e et s’avĂšre utile au dĂ©veloppement des capteurs Ă  protĂ©inesThe atomic force microscopy (AFM) gives access to the topography of organic and inorganic samplesat the atomic scale. The latest innovations offer the possiblity to understand the sample nano-mechanicalproperties (elasticity, adhesion...). Its feature set allows overcoming the demands of nanotechnology,both in the fields of physics, chemistry and biology.However, understanding biological processes require faster acquisitions for the atomic forcemicroscopy, less than a second per frame. As conventional equipment does not offer the possibility toovercome the constraint of time for dynamical studies, a prototype of high-speed atomic forcemicroscope (HS-AFM) was developed in partnership with Professor T. Ando group of Kanazawa University(Japan). It can reach scanning video speed: 25-50 frames/s in a liquid medium. The device is beingconstantly improved: new feedback control, larger scanning sizes. The resolution is provided byminiaturized cantilevers with carbon EBD-tips. In parallel to innovative modules on the microscope, addonshave been developed: syringe pump and heating modules.The potential of the prototype, developed within the framework of the program ANR PNANO 2008HS-nanobio-Imaging, has been shown through the study of a small heat shock protein: the protein sHspLo18. This protein, from the lactic acid bacterium Oenococcus oeni, offered the possibility of a variouschanges of oligomerization degrees according to the pH, and also the chaperone and lipochaperon activityof protein under the influence of an environmental stress. The use of these techniques of microscopiescoupled with biochemical studies on this proteic model allowed to dread the effect of surfaces on theadsorption and the dynamics of biological complexes. The interaction protein – surface coulb be toapprehend and proves to be useful for the development of protein sensors developed in the laborator

    Etude dynamique et structurale de biomolécules par microscopie à force atomique HS-AFM : application à une petite protéine de choc thermique sHsp

    No full text
    The atomic force microscopy (AFM) gives access to the topography of organic and inorganic samplesat the atomic scale. The latest innovations offer the possiblity to understand the sample nano-mechanicalproperties (elasticity, adhesion...). Its feature set allows overcoming the demands of nanotechnology,both in the fields of physics, chemistry and biology.However, understanding biological processes require faster acquisitions for the atomic forcemicroscopy, less than a second per frame. As conventional equipment does not offer the possibility toovercome the constraint of time for dynamical studies, a prototype of high-speed atomic forcemicroscope (HS-AFM) was developed in partnership with Professor T. Ando group of Kanazawa University(Japan). It can reach scanning video speed: 25-50 frames/s in a liquid medium. The device is beingconstantly improved: new feedback control, larger scanning sizes. The resolution is provided byminiaturized cantilevers with carbon EBD-tips. In parallel to innovative modules on the microscope, addonshave been developed: syringe pump and heating modules.The potential of the prototype, developed within the framework of the program ANR PNANO 2008HS-nanobio-Imaging, has been shown through the study of a small heat shock protein: the protein sHspLo18. This protein, from the lactic acid bacterium Oenococcus oeni, offered the possibility of a variouschanges of oligomerization degrees according to the pH, and also the chaperone and lipochaperon activityof protein under the influence of an environmental stress. The use of these techniques of microscopiescoupled with biochemical studies on this proteic model allowed to dread the effect of surfaces on theadsorption and the dynamics of biological complexes. The interaction protein – surface coulb be toapprehend and proves to be useful for the development of protein sensors developed in the laboratoryLa microscopie Ă  force atomique (AFM) permet de visualiser la topographie d’échantillons organiqueset inorganiques Ă  l’échelle atomique. Les innovations les plus rĂ©centes offrent dĂ©sormais la possibilitĂ©d’accĂ©der aux propriĂ©tĂ©s nano-mĂ©caniques des Ă©chantillons (Ă©lasticitĂ©, adhĂ©sion
). Son panel defonctionnalitĂ©s permet de pallier aux besoins des nanotechnologies, tant dans les domaines de laphysique, de la chimie que de la biologie.Cependant, les besoins nĂ©cessaires Ă  la comprĂ©hension des processus biologiques imposent aumicroscope Ă  force atomique des vitesses d’acquisitions rapides, infĂ©rieures Ă  la seconde par image. LesĂ©quipements classiques n’offrent pas cette possibilitĂ©. C’est pour s’affranchir de ce verrou technologique,pour l’étude dynamique, qu’un prototype de microscope Ă  force atomique Ă  haute-vitesse a Ă©tĂ©dĂ©veloppĂ© (HS-AFM) en partenariat avec l’équipe du Professeur T. Ando Ă  l’UniversitĂ© de Kanazawa(Japon). Il permet d’atteindre des vitesses de balayage identiques aux vitesses vidĂ©os : 25-50 images/s, enmilieu liquide. Le dispositif est en perpĂ©tuelle amĂ©lioration : nouvelle boucle d’asservissement, domainesde balayage augmentĂ©s. La haute rĂ©solution est, quant Ă  elle, assurĂ©e par des leviers miniaturisĂ©s munisde sur-pointes en carbone. ParallĂšlement Ă  l’innovation du microscope en lui-mĂȘme, des modulescomplĂ©mentaires ont Ă©tĂ© dĂ©veloppĂ©s : module pousse seringue et module chauffant.Le potentiel de ce prototype, dĂ©veloppĂ© dans le cadre d’un programme ANR PNANO 2008 HSnanobio-Imaging, a Ă©tĂ© montrĂ© via l’étude d’une petite protĂ©ine de choc thermique : la protĂ©ine sHspLo18. Cette protĂ©ine, issue de la bactĂ©rie lactique Oenococcus oeni, offrait la possibilitĂ© d’étudier deschangements de degrĂ©s d’oligomĂ©risation en fonction du pH, ainsi que le rĂŽle chaperon et lipochaperonen cas de stress environnemental d’autres complexes biologiques. L’utilisation des techniques demicroscopie couplĂ©e Ă  des Ă©tudes biochimiques sur ce modĂšle protĂ©ique a permis d’apprĂ©hender l’effetdes surfaces sur l’adsorption et la dynamique des complexes biologiques. L’interaction protĂ©ine – surfacea pu ĂȘtre approchĂ©e et s’avĂšre utile au dĂ©veloppement des capteurs Ă  protĂ©ine

    Health-related Quality of Life Factors among Frail Elders in the US: A Revised Health Capital Perspective

    No full text
    International audienceIn this study, we present a new model describing the mechanical behavior of the skeletal muscle during isometric contraction. This model is based on a former Hill-inspired model detailing the electromechanical behavior of the muscle based on the Huxley formulation. However, in this new multiscale model the muscle is represented at the Motor Unit (MU) scale. The proposed model is driven by a physiological input describing the firing moments of the activated MUs. Definition of both voluntary and evoked MU recruitment schemes are described, enabling the study of both contractions in isometric conditions. During this type of contraction, there is no movement of the joints and the tendon-muscle complex remains at the same length. Moreover, some well-established macroscopic relationships such as force-length or force-velocity properties are considered. A comparison with a twitch model using the same input definition is provided with both recruitment schemes exhibiting limitations of twitch type models. Finally, the proposed model is validated with a comparison between simulated and recorded force profiles following eight electrical stimulation in isometric conditions. The simulated muscle force was generated to mimic the one recorded from the quadriceps of a patient implanted with a functional electrical stimulation neuroprosthesis. This validation demonstrates the ability of the proposed model to reproduce realistically the skeletal muscle contractions and to take into account subject-specific parameters

    Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: a multicentre cohort study

    No full text
    Erratum inCorrection to Lancet Respir Med 2021; published online April 19. https://doi.org/10.1016/S2213-2600(21)00096-5.International audienceBackground: In the Île-de-France region (henceforth termed Greater Paris), extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress syndrome (ARDS) was considered early in the COVID-19 pandemic. We report ECMO network organisation and outcomes during the first wave of the pandemic.Methods: In this multicentre cohort study, we present an analysis of all adult patients with laboratory-confirmed SARS-CoV-2 infection and severe ARDS requiring ECMO who were admitted to 17 Greater Paris intensive care units between March 8 and June 3, 2020. Central regulation for ECMO indications and pooling of resources were organised for the Greater Paris intensive care units, with six mobile ECMO teams available for the region. Details of complications (including ECMO-related complications, renal replacement therapy, and pulmonary embolism), clinical outcomes, survival status at 90 days after ECMO initiation, and causes of death are reported. Multivariable analysis was used to identify pre-ECMO variables independently associated with 90-day survival after ECMO.Findings: The 302 patients included who underwent ECMO had a median age of 52 years (IQR 45-58) and Simplified Acute Physiology Score-II of 40 (31-56), and 235 (78%) of whom were men. 165 (55%) were transferred after cannulation by a mobile ECMO team. Before ECMO, 285 (94%) patients were prone positioned, median driving pressure was 18 cm H2O (14-21), and median ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen was 61 mm Hg (IQR 54-70). During ECMO, 115 (43%) of 270 patients had a major bleeding event, 27 of whom had intracranial haemorrhage; 130 (43%) of 301 patients received renal replacement therapy; and 53 (18%) of 294 had a pulmonary embolism. 138 (46%) patients were alive 90 days after ECMO. The most common causes of death were multiorgan failure (53 [18%] patients) and septic shock (47 [16%] patients). Shorter time between intubation and ECMO (odds ratio 0·91 [95% CI 0·84-0·99] per day decrease), younger age (2·89 [1·41-5·93] for ≀48 years and 2·01 [1·01-3·99] for 49-56 years vs ≄57 years), lower pre-ECMO renal component of the Sequential Organ Failure Assessment score (0·67, 0·55-0·83 per point increase), and treatment in centres managing at least 30 venovenous ECMO cases annually (2·98 [1·46-6·04]) were independently associated with improved 90-day survival. There was no significant difference in survival between patients who had mobile and on-site ECMO initiation.Interpretation: Beyond associations with similar factors to those reported on ECMO for non-COVID-19 ARDS, 90-day survival among ECMO-assisted patients with COVID-19 was strongly associated with a centre's experience in venovenous ECMO during the previous year. Early ECMO management in centres with a high venovenous ECMO case volume should be advocated, by applying centralisation and regulation of ECMO indications, which should also help to prevent a shortage of resources
    corecore